If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1033=16t^2
We move all terms to the left:
1033-(16t^2)=0
a = -16; b = 0; c = +1033;
Δ = b2-4ac
Δ = 02-4·(-16)·1033
Δ = 66112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{66112}=\sqrt{64*1033}=\sqrt{64}*\sqrt{1033}=8\sqrt{1033}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1033}}{2*-16}=\frac{0-8\sqrt{1033}}{-32} =-\frac{8\sqrt{1033}}{-32} =-\frac{\sqrt{1033}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1033}}{2*-16}=\frac{0+8\sqrt{1033}}{-32} =\frac{8\sqrt{1033}}{-32} =\frac{\sqrt{1033}}{-4} $
| 3/10x+3/5=12 | | -60=p-25 | | m-9=38 | | 6-7x/8x-9=1/3 | | 2x-1/x+2=8/7 | | 8x-5-(11-6x)=20-8x | | 5x-5(x-4)=150 | | -15=-m+5-3m | | 3.1(1r-4.5)=59.6 | | 4x+2(3x+8)=66 | | 3x+7=7x+59 | | 3(4x-8)+4=40 | | -8r-3/5+7r=-4/5 | | 5h-2(3/2h+2)=10 | | −15+n=−9{6} | | 2x^2+33x-4.7=0 | | 6/n-3=5/n-10 | | h/3+4=-3 | | x3=0.98 | | 25z^2+98=100 | | -t/3+11=23 | | x=-5,x=-8 | | x*x*x=0.98 | | -(9x-3)-(2x-5)+11=-4(x-1)-(10x+3)+3 | | 0.05(x-500000)=200000 | | |2x+2|-7=-1 | | 2x-5(x-5)=-6+2x-9 | | (3x+10)°+x°=x | | -12+3a=-3 | | -4-4y=24 | | -6(3p+4)-39=3(2p+3) | | 2x-5(x-5)=-6+2-9 |